Anova coding (also called deviation or simple coding) sets the grand mean as the intercept. Each contrast compares one level with the reference level (base).

contr_code_anova(fct, levels = NULL, base = 1)

Arguments

fct

the factor to contrast code (or a vector)

levels

the levels of the factor in order

base

the index of the level to use as baseline

Value

the factor with contrasts set

Examples

df <- sim_design(between = list(pet = c("cat", "dog")), 
                 mu = c(10, 20), plot = FALSE)
df$pet <- contr_code_anova(df$pet)
lm(y ~ pet, df) %>% broom::tidy()
#> # A tibble: 2 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)     15.0    0.0663     226.  9.05e-241
#> 2 pet.dog-cat     10.0    0.133       75.6 4.76e-148

df <- sim_design(between = list(pet = c("cat", "dog", "ferret")), 
                 mu = c(2, 4, 9), empirical = TRUE, plot = FALSE)
                 
df$pet <- contr_code_anova(df$pet, base = 1)
lm(y ~ pet, df) %>% broom::tidy()
#> # A tibble: 3 × 5
#>   term           estimate std.error statistic   p.value
#>   <chr>             <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)        5.00    0.0577      86.6 8.45e-213
#> 2 pet.dog-cat        2.00    0.141       14.1 4.53e- 35
#> 3 pet.ferret-cat     7.00    0.141       49.5 1.67e-145

df$pet <- contr_code_anova(df$pet, base = 2)
lm(y ~ pet, df) %>% broom::tidy()
#> # A tibble: 3 × 5
#>   term           estimate std.error statistic   p.value
#>   <chr>             <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)        5.0     0.0577      86.6 8.45e-213
#> 2 pet.cat-dog       -2.00    0.141      -14.1 4.53e- 35
#> 3 pet.ferret-dog     5       0.141       35.4 1.89e-108

df$pet <- contr_code_anova(df$pet, base = "ferret")
lm(y ~ pet, df) %>% broom::tidy()
#> # A tibble: 3 × 5
#>   term           estimate std.error statistic   p.value
#>   <chr>             <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)        5.0     0.0577      86.6 8.45e-213
#> 2 pet.cat-ferret    -7.00    0.141      -49.5 1.67e-145
#> 3 pet.dog-ferret    -5.00    0.141      -35.4 1.89e-108