See the help for `qnbinom()` for further info about prob versus mu parameter specification. Thanks for the suggested code, David Hugh-Jones!
Arguments
- x
the normally distributed vector
- size
target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution). (size > 0)
- prob
the probability of success on each trial (0 to 1)
- mu
alternative parametrization via mean (only specify one of prob or mu)
- lower.tail
logical; if TRUE (default), probabilities are P[$X <= x$], otherwise, P[$X > x$]
- log.p
logical; if TRUE, probabilities p are given as log(p)
- x_mu
the mean of x (calculated from x if not given)
- x_sd
the SD of x (calculated from x if not given)
Examples
x <- rnorm(10000)
y <- norm2nbinom(x, 1, prob = 0.5)
z <- norm2nbinom(x, 1, mu = 1)
g <- ggplot2::ggplot() + ggplot2::geom_point(ggplot2::aes(x, y))
ggExtra::ggMarginal(g, type = "histogram")